ar X iv : 0 80 8 . 23 81 v 1 [ m at h . G R ] 1 8 A ug 2 00 8 On finite - index extensions of subgroups of free groups ∗

نویسنده

  • Pedro Silva
چکیده

We study the lattice of finite-index extensions of a given finitely generated subgroup H of a free group F . This lattice is finite and we give a combinatorial characterization of its greatest element, which is the commensurator of H . This characterization leads to a fast algorithm to compute the commensurator, which is based on a standard algorithm from automata theory. We also give a sub-exponential and super-polynomial upper bound for the number of finite-index extensions of H , and we give a language-theoretic characterization of the lattice of finite-index subgroups of H . Finally, we give a polynomial time algorithm to compute the malnormal closure of H .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 8 . 23 81 v 2 [ m at h . G R ] 2 4 Ju l 2 00 9 On finite - index extensions of subgroups of free groups ∗

We study the lattice of finite-index extensions of a given finitely generated subgroup H of a free group F . This lattice is finite and we give a combinatorial characterization of its greatest element, which is the commensurator of H . This characterization leads to a fast algorithm to compute the commensurator, which is based on a standard algorithm from automata theory. We also give a sub-exp...

متن کامل

ar X iv : 0 90 8 . 27 37 v 1 [ m at h . G R ] 1 9 A ug 2 00 9 On Bruck Loops of 2 - power Exponent , II ∗

As anounced in [BSS], we show that the non-passive finite simple groups are among the PSL2(q) with q − 1 ≥ 4 a 2-power.

متن کامل

ar X iv : 0 80 8 . 27 24 v 1 [ m at h - ph ] 2 0 A ug 2 00 8 Bosons in Rapid Rotation ∗

Some recent progress in the mathematical physics of rapidly rotating, dilute Bose gases in anharmonic traps is reviewed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009